

## Toxicological Summary for:

### **Pyroxasulfone M1**

CAS: 1379794-40-7

Synonyms: [5-(difluoromethoxy)-1-methyl-3-(trifluoromethyl)pyrazol-4-yl]methanesulfonic acid;  
KIH-485-M1

### **Pyroxasulfone M3**

CAS: 1379794-41-8

Synonyms: 5-(Difluoromethoxy)-1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid;  
KIH-485-M3

MDH finds there is insufficient toxicity information available for pyroxasulfone M1 and M3 to develop chemical-specific guidance for groundwater. The pyroxasulfone M1 and M3 guidance values will be issued as Risk Assessment Advice (RAA) and will be based on the Health-Based Values (HBVs) of the parent compound, pyroxasulfone. This approach is consistent with the approach outlined in the Minnesota Statute 103H.201 Health Risk Limit Rules, Section 4717.7900 Chemical Breakdown Products.

**Acute Non-Cancer Risk Assessment Advice ( $nRAA_{Acute}$ ) = Not Derived (Insufficient Data)**

**Short-term Non-Cancer Risk Assessment Advice ( $nRAA_{Short-term}$ ) = 40 µg/L**

**Subchronic Non-Cancer Risk Assessment Advice ( $nRAA_{Subchronic}$ ) = 40 µg/L**

**Chronic Non-Cancer Risk Assessment Advice ( $nRAA_{Chronic}$ ) = 40 µg/L**

**Cancer Risk Assessment Advice (cRAA) = Not Applicable**

**Volatile:** Yes (low)

## **Summary of Guidance Value History:**

Pyroxasulfone metabolites M1 and M3 were evaluated through pesticide rapid assessments (PRAs) in 2023 and 2025, respectively. The noncancer PRA values for both degradates were both set to the value derived for the parent compound, pyroxasulfone (5 µg/L). In 2025, Short-term, Subchronic, and Chronic nRAAs were derived. The Short-term, Subchronic, and Chronic nRAAs have changed from the 2023 and 2025 PRAs as a result of 1) using MDH's most recent risk assessment methodology (multiduration guidance), and 2) incorporation of more toxicity information.

## **Summary of toxicity testing for health effects identified in the Health Standards Statute (144.0751):**

Even if testing for a specific health effect was not conducted for this chemical, information about that effect might be available from studies conducted for other purposes. MDH has considered the following information in developing health protective guidance.

|                     | Endocrine      | Immunotoxicity | Development    | Reproductive   | Neurotoxicity  |
|---------------------|----------------|----------------|----------------|----------------|----------------|
| Tested for specific | No             | No             | No             | No             | No             |
| Effects observed?   | - <sup>1</sup> |

## **Comments on extent of testing or effects:**

<sup>1</sup>Guidance values for pyroxasulfone M1 and M3 are derived using data from the parent compound, pyroxasulfone. Pyroxasulfone M1 and M3 were not tested for endocrine-, immunotoxicity-, developmental-, reproductive-, or neurotoxicity-related effects. For discussion of these effects following exposure to pyroxasulfone, please see the pyroxasulfone summary sheet at: [Toxicological Summary for Pyroxasulfone](#) (<https://www.health.state.mn.us/communities/environment/risk/docs/guidance/gw/puroxasulfone.pdf>)

## **Resources Consulted During Review:**

Australian Pesticides & Veterinary Medicines Authority (APVMA). (2011). *Public Release Summary on the Evaluation of the New Active Pyroxasulfone in the Product Sakura 850 WG Herbicide. APVMA Product Number 63998.*

Cohen, S. M. (2002). Comparative Pathology of Proliferative Lesions of the Urinary Bladder. *Toxicologic Pathology*, 30(6), 663-671.

Health Canada. (2012). *Proposed Registration Decision: Pyroxasulfone*. Ottawa, Ontario Retrieved from [https://publications.gc.ca/collections/collection\\_2012/sc-hc/H113-9-2012-20-eng.pdf](https://publications.gc.ca/collections/collection_2012/sc-hc/H113-9-2012-20-eng.pdf)

Health Canada. (2025). *Human Health Reference Values for Pesticides in Drinking Water Sources*. Retrieved from <https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/fact-sheets-other-resources/human-health-reference-values-drinking-water.html>

Kyoya, T., Arnold L. L., Pennington, K. L., Kakiuchi-Kiyota, S., Terada, M., Abe, K., & Cohen, S. M. (2020). Urinary crystal formation and urothelial effects of pyroxasulfone administered to male rats. *Toxicology Mechanisms and Methods*, 30(9), 656-671. <https://doi.org/10.1080/15376516.2020.1805666>

Minnesota Department of Health (MDH). (2008). *Statement of Need and Reasonableness (SONAR), July 11, 2008. Support document relating to Health Risk Limits for Groundwater Rules*. Retrieved from <https://www.leg.state.mn.us/archive/sonar/SONAR-03733.pdf#page=2>

Minnesota Department of Health (MDH). (2017). *MDH Health Risk Assessment Methods to Incorporate Human Equivalent Dose Calculations into Derivation of Oral Reference Doses (May 2011, revised 2017)*. <https://www.health.state.mn.us/communities/environment/risk/docs/guidance/hedrefguide.pdf>

National Center for Biotechnology Information (NCBI). (2025a). *PubChem Compound Summary for CID 11556910, Pyroxasulfone*. <https://pubchem.ncbi.nlm.nih.gov/compound/11556910>

National Center for Biotechnology Information (NCBI). (2025b). *PubChem Compound Summary for CID 138394796, Pyroxasulfone metabolite M-3*. <https://pubchem.ncbi.nlm.nih.gov/compound/138394796>

National Center for Biotechnology Information (NCBI). (2025c). *PubChem Compound Summary for CID 138394798, Pyroxasulfone metabolite M-1*. <https://pubchem.ncbi.nlm.nih.gov/compound/138394798>

New Zealand Environmental Protection Authority (Te Mana Rauhī Taiao). (2018). *Decision on application for approval to import or manufacture Sakura 850 WG for release (APP202266)*.

U.S. Environmental Protection Agency (EPA). (1988). *Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Office of Research and Development*. <http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855>

United States Environmental Protection Agency (EPA). (2010). *Pyroxasulfone: Report of the Cancer Assessment Review Committee*.

United States Environmental Protection Agency (EPA). (2011a). *Human Health Risk Assessment for Use of New Active Ingredient Pyroxasulfone on Corn*. Washington, D.C. Retrieved from <https://www.regulations.gov/document/EPA-HQ-OPP-2009-0717-0006>

United States Environmental Protection Agency (EPA). (2011b). *Recommended Use of Body Weight $\frac{3}{4}$  as the Default Method in Derivation of the Oral Reference Dose*. Retrieved from <https://www.epa.gov/risk/recommended-use-body-weight-34-default-method-derivation-oral-reference-dose>

United States Environmental Protection Agency (EPA). (2012). *Benchmark Dose Technical Guidance*. Retrieved from [https://www.epa.gov/sites/default/files/2015-01/documents/benchmark\\_dose\\_guidance.pdf](https://www.epa.gov/sites/default/files/2015-01/documents/benchmark_dose_guidance.pdf)

United States Environmental Protection Agency (EPA). (2018). *Human Health Risk Assessment for the Section 3 New Uses of Pyroxasulfone on Crop Subgroup 1C, tuberous and corm vegetables and Crop Group 3-07, bulb vegetables*. Washington, D.C. Retrieved from <https://www.regulations.gov/document/EPA-HQ-OPP-2015-0787-0027>

United States Environmental Protection Agency (EPA). (2021). *2021 Human Health Benchmarks for Pesticides*. Retrieved from <https://www.epa.gov/sdwa/2021-human-health-benchmarks-pesticides>

United States Environmental Protection Agency (EPA). (2025a). *CompTox Chemicals Dashboard*.

<https://comptox.epa.gov/dashboard/>

United States Environmental Protection Agency (EPA). (2025b). *Pyroxasulfone: Human Health Risk Assessment for the New Section 3 Uses on Fruit, Small, Vine Climbing, Except Fuzzy Kiwifruit, Subgroup 13-07F and Nut, Tree, Group 14-12*. Washington, D.C. Retrieved from

<https://www.regulations.gov/document/EPA-HQ-OPP-2024-0212-0005>.